X線トポグラフィ研究会(大阪大学、2018年8月3日)

β-Ga2O3の積層欠陥

山口博隆 産業技術総合研究所

註)非公開のスライドがあります

β-Ga₂O₃の結晶構造

単斜晶系 (C2/m)

a = 1.223 nm b = 0.304 nm c = 0.580 nm $\beta = 103.7^{\circ}$

O副格子は歪んだ三次元最密充填構造

β-Ga₂O₃の最密充填構造

β-Ga₂O₃のすべり系

面	並進ベクトル	長さ (nm)	
<i>{</i> 201 <i>}</i>	(010)	0.304	
	$\frac{1}{2}\langle 112\rangle$	0.752	
<i>{</i> 101 <i>}</i>	(010)	0.304	
	(101)	1.472	
/310 }	(001)	0.580	
	$\frac{1}{2}\langle 1\bar{3}0\rangle$	0.760	
{310}	(001)	0.580	
	$\frac{1}{2}\langle 130\rangle$	0.760	

Yamaguchi et al., 2016

(201)面の積層構造

試料: (201) 2インチウェーハ

面形状欠陥

- 面形状欠陥のgによる選択的な出現
- 面欠陥は(201)面に平行
- ・長方形で一組の辺がb軸に平行
- 一辺が50-100ミクロン程度
- 転位とのつながりはない

(201)面内の部分転位

積層欠陥のコントラスト

Ď

積層欠陥を囲む部分転位 フランク型 ショックレー型 転位のコントラスト~ *ğ* · *Ď*

珪屋反映の赤仏	g	$g \cdot f_1$	$m{g}\cdotm{f}_2$
慎唐欠陥の変 位	12 00	-2/3	-2
\vec{f}	626	4/3	2
\rightarrow	006	2/3	2
積層欠陥の構造因子 = $F_g \exp(-2\pi i \vec{g} \cdot f)$	12 01	-5/9	-5/3
	513	5/9	2/3
$g \cdot r \neq (Integer)$	206	5/9	5/3
のとき、強度コントラスト	623	1	1
	606	1	3

積層欠陥の観察結果

g	$g \cdot f_1$	$\boldsymbol{g}\cdot\boldsymbol{f}_2$	λ	Appearance		
12 0 0	-2/3	-2	0.17		0	
626	4/3	2	0.11		0	
006	2/3	2	0.15		0	
12 0 1	-5/9	-5/3	0.15		0	
513	5/9	2/3	0.165		0	
206	5/9	5/3	0.15		0	
623	1	1	0.17		X	
606	1	3	0.151		×	

 f_2 超格子型

積層欠陥モデル

積層欠陥モデル

β-Ga₂O₃の結晶成長

Edge-defined film-fed growth method

X線トポグラフィー: (201) ウェーハ **(g**⊥[130]) g=623 g=006 **(g**⊥[010]) D 0.5 mm g (310) [102] $\{201\}\langle010\rangle$ А $\{\overline{2}01\}\frac{1}{2}\langle 112\rangle$ В (201) (101) $\{101\}\langle010\rangle$ С (310) $\{\bar{3}10\}\frac{1}{2}\langle 130\rangle$

D

g

[010]

転位を減らすためにはどうしたらいいか?

すべり面と結晶成長方向について考えてみた。

Si結晶成長におけるネッキング X線トポグラフィによる転位の三次元観察

Si結晶成長におけるネッキング X線トポグラフィによる転位の三次元観察

1 mm

Si結晶成長におけるネッキング X線トポグラフィによる転位の三次元観察

2 mm

Cz引き上げ中のメニスカスとネッキングによる転位の消滅 (阿部孝夫、「メルト成長のダイナミクス」より)

図 6.3 Dash ネッキングでの転位の消滅

まとめ

- β-Ga₂O₃の積層欠陥は部分転位ループに囲まれた積層欠 陥である。
- 転位密度を低減させるための結晶成長方法を考察した。
- <110>成長シリコンのネッキング部の三次元トポグラフィ
 を計画している。